Multi-Class AttentionNet.

D. Yoo¹, K. Paeng¹, S. Park¹, S. Hwang², H. E. Kim², J. Lee², M. Jang², A. S. Paek², K. K. Kim¹, S. D. Kim¹, I. S. Kweon¹.

¹KAIST, ²Lunit Inc.
State-of-the-art methods for object localization.
State-of-the-art methods for object localization.

1) Box-regression with a CNN.

[Szegedy et al., NIPS’13],
DeepMultiBox [Erhan et al., CVPR’14],
OverFeat [Sermanet et al., ICLR’14],
...

State-of-the-art methods for object localization.

1) Box-regression with a CNN.

(−) Direct mapping from an image to an exact bounding box is relatively difficult for a CNN.
State-of-the-art methods for object localization.

2) Region proposal + classifier.

R-CNN [Gkioxari et al., CVPR’14],
Fast R-CNN [Gkioxari, ICCV’15],
Faster R-CNN [Ren et al., NIPS’15],
DeepMultiBox [Erhan et al., CVPR’14],
...

State-of-the-art methods for object localization.

2) Region proposal + classifier.

(−) Prone to focus on discriminative part (e.g. face) rather than entire object (e.g. human body).
Idea:
Ensemble of weak directions.

Stop signal.
Idea:
Ensemble of weak directions.

Stop signal.

Stop signal.
Idea:
Ensemble of weak directions.
Model:
Model:
(CNN regression model)
Model:
Rather than CNN regression model, we use CNN classification model.
Model:
Rather than CNN regression model, we use **CNN classification** model.

Define weak directions: fixed length, and quantized.
Strength to the previous methods.

Box-regression:
(-) Relatively difficult for a CNN.

Weak direction:
(+) Relatively easy for a CNN.
Strength to the previous methods.

<table>
<thead>
<tr>
<th>Box-regression:</th>
<th>R-CNN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(−) Relatively difficult for a CNN.</td>
<td>(−) Focuses on distinctive parts.</td>
</tr>
</tbody>
</table>

Weak direction:
(+) Relatively easy for a CNN.

Stop signal:
(+) Supervision of clear terminal point.
AttentionNet:
Two layers for each corner.

Top-left corner.

Bottom-right corner.

CNN
AttentionNet:
Two layers for each corner.
AttentionNet:
Two layers for each corner.

Top-left corner.

Bottom-right corner.

CNN
AttentionNet: iterative classification.
AttentionNet: Aggregating Weak Directions for Accurate Object Detection

Human detection examples on PASCAL VOC 2007
Initial box proposal:
Initial box proposal:

Boxes satisfying \[\text{condition} \].
Initial box proposal:

Boxes satisfying \(\) .

Rejected.
Initial box proposal:

Boxes satisfying \[\text{Rejected.} \]
Initial box proposal:

Boxes satisfying \square. Continue.
Initial box proposal:

Boxes satisfying detected.

AttentionNet.

F \& \& F
• \& \& •
0 0
Resize
CNN
F
•
F
• 1 1
Reject.
Initial box proposal:

Boxes satisfying \(\square \).

Multi-\{scale, aspect ratio\} sliding window search using **fully-convolutional network**.
Initial detection and refinement.
Extension to multiple classes.
Extension to multiple classes.

Class 1.
Extension to multiple classes.

Class 1.

Class 2.

Multi-class AttentionNet.
Extension to multiple classes.

Class 1. Class 2. Class 3.

Multi-class AttentionNet.
Extension to multiple classes.

Multi-class AttentionNet.
Extension to multiple classes.

Class-wise direction layers.

Class 1. Class 2. Class 3. Class N.

Classification layer.

Multi-class AttentionNet.
Final architecture.

CoV8-C1-TL. 1*1*1,024*4

CoV8-C1-BR. 1*1*1,024*4

CoV8-C2-TL. 1*1*1,024*4

CoV8-C2-BR. 1*1*1,024*4

... ...

CoV8-CN-TL. 1*1*1,024*4

CoV8-CN-BR. 1*1*1,024*4

Directional layers.

Classification layer.

CLS

C1 C2 C3 ... Cn F

Conv8-CLS. 1*1*1,024*(N+1)

[GoogLeNet] Szegedy et al, CVPR'15
Training multi-class AttentionNet.
Training multi-class AttentionNet.

• Pre-training.
 • GoogLeNet [Szegedy et al, CVPR’15].
 • ILSVRC-CLS dataset.
Training multi-class AttentionNet.

• Pre-training.
 • GoogLeNet [Szegedy et al, CVPR’15].
 • ILSVRC-CLS dataset.

• Fine-tuning.
 • # epochs: 5.
 • # training region: 22M. (randomly generated.)
 • Learning rate of the classification layer: 0.01.
 • Learning rate of the 2K(=1K+1K) directional layers: 0.01.
 • Learning rate of the layers from conv1 to conv21: 0.001.
Training multi-class AttentionNet.

\[
Loss = \frac{1}{3} Loss^{TL} + \frac{1}{3} Loss^{BR} + \frac{1}{3} Loss^{CLS},
\]

Directional terms.
Classification term.
Training multi-class AttentionNet.

\[
Loss = \frac{1}{3} Loss^{TL} + \frac{1}{3} Loss^{BR} + \frac{1}{3} Loss^{CLS},
\]

\[
Loss^{TL} = \frac{1}{N} \sum_{i=1}^{N} (t_{ci}^{TL} \neq 0) \cdot SoftMaxLoss(y_{ci}^{TL}, t_{ci}^{TL}),
\]

\[
Loss^{BR} = \frac{1}{N} \sum_{i=1}^{N} (t_{ci}^{BR} \neq 0) \cdot SoftMaxLoss(y_{ci}^{BR}, t_{ci}^{BR}),
\]

\[
Loss^{CLS} = SoftMaxLoss(y^{CLS}, t^{CLS}).
\]
Test:
Given top-5 class predictions, we detect the classes by AttentionNet.
Test:
Given top-5 class predictions, we detect the classes by AttentionNet.

- Top-5 class prediction (7% Err):
 Ensemble of GoogLeNet, GoogLeNet-BN, VGG-16.
Test:
Given top-5 class predictions, we detect the classes by AttentionNet.

• Top-5 class prediction (7% Err): Ensemble of GoogLeNet, GoogLeNet-BN, VGG-16.

• Number of multi-\{scale, aspect ratio\} inputs: 6.
Results on validation set.
Results on validation set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-5 CLS-LOC Error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OverFeat [Sermanet et al., ICLR’14]</td>
<td>30.00%</td>
</tr>
<tr>
<td>VGG [Simonyan and Zisserman, ICLR’15]</td>
<td>26.90%</td>
</tr>
<tr>
<td>GoogLeNet [Szegedy et al, CVPR’15]</td>
<td>26.70% (test set)</td>
</tr>
</tbody>
</table>
Results on validation set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-5 CLS-LOC Error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OverFeat [Sermanet et al., ICLR’14]</td>
<td>30.00%</td>
</tr>
<tr>
<td>VGG [Simonyan and Zisserman, ICLR’15]</td>
<td>26.90%</td>
</tr>
<tr>
<td>GoogLeNet [Szegedy et al, CVPR’15]</td>
<td>26.70% (test set)</td>
</tr>
<tr>
<td>A single "Multi-class AttentionNet", without test augmentation.</td>
<td>16.11%</td>
</tr>
</tbody>
</table>
Results on validation set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-5 CLS-LOC Error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OverFeat [Sermanet et al., ICLR’14]</td>
<td>30.00%</td>
</tr>
<tr>
<td>VGG [Simonyan and Zisserman, ICLR’15]</td>
<td>26.90%</td>
</tr>
<tr>
<td>GoogLeNet [Szegedy et al, CVPR’15]</td>
<td>26.70% (test set)</td>
</tr>
<tr>
<td>A single “Multi-class AttentionNet”, without test augmentation.</td>
<td>16.11%</td>
</tr>
<tr>
<td>A single “Multi-class AttentionNet”, with test augmentation (original and flip).</td>
<td>14.96%</td>
</tr>
</tbody>
</table>
Results on validation set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-5 CLS-LOC Error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OverFeat [Sermanet et al., ICLR’14]</td>
<td>30.00%</td>
</tr>
<tr>
<td>VGG [Simonyan and Zisserman, ICLR’15]</td>
<td>26.90%</td>
</tr>
<tr>
<td>GoogLeNet [Szegedy et al, CVPR’15]</td>
<td>26.70% (test set)</td>
</tr>
<tr>
<td>A single “Multi-class AttentionNet”, without test augmentation.</td>
<td>16.11%</td>
</tr>
<tr>
<td>A single “Multi-class AttentionNet”, with test augmentation (original and flip).</td>
<td>14.96%</td>
</tr>
</tbody>
</table>

Note that we use a SINGLE “Multi-class AttentionNet”.
Related publication: