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Overview

● Fisher Vector
● Improved FV + results on VOC 07
● Compression
● Classification
● Results on VOC2010 & ILSVRC2010
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Fisher Vector

● Exploiting Generative Models in discriminative 
classifiers [Jaakkola & Haussler 1999]

● Feature vector is derivative wrt probabilistic model

● Measure Similarity using the Fisher Kernel

● Fisher Information Matrix

● Learning a classifier on Fisher Kernel equals learning 
a linear classifier on                 with  
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Fisher Vector (2)

● Fisher Kernels on visual vocabularies for image categorization 
[Perronnin & Dance 2007] 

●                                     D-dimensional local features from an image

● GMM:

● Gradient:
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Fisher Vector (3)

[0 0 0 1]

BOV

[.3 .1 .1 .5]

Fisher Vector

[.15 -.2 -.35 .2]

[.8 -1.5 -3.7 -1.3 -3.8 1.2 -.9 1.4]

[-1.2 -.9 1.4 -.8 1.5 -3.7 1.3 -3.8 ]

Hard Assignment

Soft Assignment

Gradient wrt w

Gradient wrt mean

Gradient wrt var

BOV Histogram has size: K
Fisher Vector (wrt to mean and var): 2 * D * K

1 2

4 3

* the numbers are only for illustrative purpose
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Improving the Fisher Vector 
● L2 Normalization

● Power Normalization

● Spatial Pyramid Matching
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L2 Normalization

● By construction the Fisher Vector discards descriptors 
which are likely to occur in any image  

● The FV focus on image specific features

● However, the FV depends on the amount of image 
specific information / background information

● 2 images with same object on a different scale will 
have a different feature vector

● L2 Normalization to remove this dependence
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Power Normalization

● As the number of Gaussians increase, the FV 
becomes sparser
● Replace dot-product with other kernel
● Unsparsify the representation

● Power normalization to unsparsify:

K = 16 K = 64 K = 256 K = 256
Power Normalized 
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Spatial Pyramids

● Take rough geometry into account [Lazebnik 2006]

● Power normalization becomes even more important (FV is 
sparser)
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Experiments VOC 2007
● Improved Fisher Vector [ECCV 2010]
● Dense multiscale sampling, PCA, K=256 
● Linear SVM
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Experiments VOC 2007 (2)
● Improved Fisher Vector [ECCV 2010]

● Larger Scale 

● Flickr Group Images
● Up to 25k per class / 350k in total
● Late fusion with VOC07 trainset 
● 63.3% (SIFT only)

● Best results  63.5% Localization and Classification 
[Harzallah et al. 2009]

● Flickr Groups are a great resource for labelled images  

● No additional labelling used!
● More training data improves performance
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So far...

● FV is a rich representation, extends BOV.

● High dimensional (2 D K S) but allows for linear SVM 

● Performance is compatible to state of the art

However...
● 2 * 64 * 256 * 8 = 262,144 dimensions 

● Almost dense feature

● ~ 1MB per image / per modality

● ImageNet Train/Test/Val → 1.4 TB (per modality)
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Compression [unpublished]

Two options

A) Dimension Reduction
• PCA / Dense Random projections 

• is costly in high dimensional dense space
• Hash Kernels

• Observation: performance decreases rapidly (already by factor 4)
• Can improve learning speed (not necessary)

B) Data Compression
• Use same dimensionality
• But lossy compression up to factor 64 possible.
• 1.4TB → 20GB (per modality)
• Not able to learn in compressed space
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Stochastic Gradient Descent (SGD)

● Learn Linear SVM in the primal, PEGASOS 
[Shalev-Shwartz et al. 2007]

● SGD inspired on Pegasos by L. Bottou 
[http://leon.bottou.org]

● Online algorithm, using one sample at the time
● Our approach is: 

1.  Load compressed vector 

2.  Decompress vector

3.  SGD Update
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Stochastic Gradient Descent (2)

● Performance vs number of passes through data
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Categorization Pipeline

● Extract dense sampled features (SIFT, Colour)
● Project (with PCA) to 64D
● Learn codebook with K (256) Gaussians on 1M 

features
● Learn Compressor (on small set of FV)
● Compute and compress FV 
● Learn Linear Classifiers using SGD
● Classify test images
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Categorization Pipeline (2)

● Computation time for Learning ImageNET
Intel Xeon double quadcore (16 proc) @ 2.53GHz, 32GB RAM

1.2M train images, training ~ 4 CPU sec per image / modality

* Without significant loss of performance 500 → 50 iterations

CPU Wall-Clock

Extract SIFT+Projection 36h 18h

GMM minutes

Learn Compressor 48h 3h

Extract FV + Compression 96h 6h

500 SGD Iterations* 960h 66h

Total (SIFT) 1140h 93h
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Categorization Pipeline (3)

● Computation time for Testing on ImageNET

● Total SIFT + Col = 30h
● 150K images / 1000 classes

Classification  << 1ms per image/class/modality

CPU

Feature Extraction + Projection 2.5h

FV Extraction 30m

Classifiers 12h
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Results

● Pascal VOC 2010 and ImageNet Challenge
● Same approach and settings
● K = 256 
● FV + L2 & Power Norm  + pyramids 
● Compression

● Except for VOC train/val set

● Linear SVM in primal
● Number of SGD iterations are different
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Pascal VOC 2010
● 10K test images / 20 classes / multi-label

● Challenge 1: Only provided train/val data
Rank  MAP
1 NUSPSL 73.8
2 NLPR 71.2
3 NEC 70.9
9 XRCE Improved FV 61.2
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Pascal VOC 2010 (2)
● 10K test images / 20 classes / multi-label

● Challenge 2: Any data except test data

● 1M Flickr Group images of 18 classes 

● Tv/monitor and sofa are missing
● No additional labelling, just the group labels

More data helps: 61.2 → 68.3 MAP

Rank MAP # Classes

4 BIT 26.9 20

3 UCI 51.7 9

2 XRCE Flickr 1M 65.5 18
1 XRCE Optimal Fuse F & V 68.3 20
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ImageNet Challenge

● 150k test images / 1000 classes / single labelled.
● Flat cost: is the correct label in the top 5?
● Hierarchical cost: distance to lowest common ancestor 

flat cost hie cost

NEC-UIUC 0.28191 2.1144

XRCE 0.33649 2.5553

ISIL 0.44558 3.6536

UCI 0.46624 3.6288



23

Conclusions

● Improved Fisher Vector for Image Classification

● Linear Classification → scales to larger scale

● More data (Flickr Groups) helps 

● Pascal VOC 2010: 61.2 → 68.3 MAP

● Using compression → scales to LARGE scale

● Very very fast: training (8s/i) & classifying (2s/i) 
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Questions?
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L2 Normalization (2)
● Fisher Vector

● GMM Trained with Maximum Likelihood, ie maximize

● Fisher Vectors automatically focus on image specific features and discard 
image independent/background features

● L2 Normalization to remove dependence on

1

2

3
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