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Results Overview

* Object Localization

a) with "provided" data: 1st place (Loc Error: 6.23%)
b) with "external" data: 1st place (Loc Error: 6.19%)

* Object Detection

a) with "provided" data: 2"d place (by mAP: 65.8%)
b) with "external" data: 2"d place ( by mAP: 65.8% )

* Object Detection from video (VID)

a) with "provided" data: 2"d place (by mAP: 75.8%)
b) with "external" data: 2"d place ( by mAP: 76.0% )




Dual Path Networks
(DPN)
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arXiv Preprint Code & Trained Models
https://arxiv.org/abs/1707.01629 https://github.com/cypw/DPNs
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Motivation

(a) Residual Network
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(b) Densely Connected Network




Motivation

(b) Densely Connected Network




Analysis

(a) Residual Network (b) Densely Connected Network (b) Densely Connected Network




Analysis

When green arrows share parameters, they
produce exactly the same outputs.

(b) Densely Connected Network




Analysis

When green arrows share parameters, they | R, .. @ )
produce exactly the same outputs. 1x1

Thus, some computations are redundant here.
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(b) Densely Connected Network




Analysis

When green arrows share parameters, they |,
produce exactly the same outputs. 1x1

Thus, some computations are redundant here.
We can add a new path to temporarily save the

outputs of green arrows for reuse, and only
execute the operation in the orange arrows.
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(b) Densely Connected Network




. A new path to temporarily save the outputs from the green arrows for reuse.
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(c) Densely Connected Network (b) Densely Connected Network
(with shared connections )




. A new path to temporarily save the outputs from the green arrows for reuse.
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(c) Densely Connected Network
(with shared connections )

(b) Densely Connected Network




. A new path to temporarily save the outputs from the green arrows for reuse.
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(a) Residual Network (c) Densely Connected Network (b) Densely Connected Network

(with shared connections )




Analysis
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(a) Residual Network

Cross-layer parameter sharing
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(b) Densely Connected Network
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(a) Residual Network
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Residual Networks are essentially
Densely Connected Networks but
with shared connections.

DenseNets

ResNets
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(b) Densely Connected Network
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(a) Residual Network
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Residual Networks are essentially
Densely Connected Networks but
with shared connections.

DenseNets
ResNets
Advantage:
- ResNet:

features refinement (reuse feature)

- DenseNet:
keep exploring new features

e+

+
11y,
3"3*

(b) Densely Connected Network




Dual Path Architecture

N

SELEEA

Senior Employees Freshman

When managing a company:

Employees need to keep improving the skills
(Feature refinement)

Also need to hire freshman to the company
(Feature exploration)
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Dual Path Architecture
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(d) Dual Path Architecture




Dual Path Architecture

/ (d) Dual Path Architecture \

Feature Refinement
(Reuse Features)

Explore New Features




Dual Path Networks




Dual Path Networks

{  The sub-network can be replaced

by any micro-structures, not
necessarily a bottleneck structure




Dual Path Networks

( ) > « Three DPNs are designed:

'
| 3x3 DPN-92, DPN-98, DPN-131
¢ 1x1 /‘ 1‘ '\

i depth=92 depth=98 depth=131




Dual Path Networks

ResNeXt-101
(64x4d) [2]

320 MB

15.5

12.1GB

20.4/5.3

Model Size
GFLOPs

GPU Memory

Top1/Top 5
Error.

DPN-98
236 MB - 26%
11.7 - 25%
11.1GB - 8%
20.2/5.2

* Testing scale: x224 / Batch Size: 32 per GPU




Performance

Single model, Single center-crop, Top-5 val error rate

4.4%
4.25%
4.16%
DPN-131 is Fast!!
Training = 60 img/sec
(per node, 4 x K80 cards)
ResNeXt-101 (64x4d) [2] Very Deep PolyNet [3] DPN-131

( Best single model reported )

*Testing scale: x299 / x320

} [3] X Zhang, et al. "Polynet: A pursuit of structural diversity in very deep networks" arXiv 2016 NwUS @553_39
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ILSVRC 2017: Object Localization & Detection

« Main Framwork:

Input Image

' DPN-92, DPN-98, DPN-131 |
- ResNeXt-101(64x4d), CRU-Net, |
o : DenseNet, ... 1
Ensembled |~
CLs ™Models |
' Multi-sacle Dense Testing |
| + Weighted Sum
Confidence

of each Class

Ensembled \ R Loc/Det
Input Image Faster R-CNNs i Results
A

Simplest Faster R-CNN Pipleline
+ Weighted Sum
DPN-92, DPN-98, DPN-131 ...




ILSVRC 2017: Object Localization

 Visualization:




ILSVRC 2017: Object Detection

 Visualization:
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Thank You!
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